

MATEENBAR[™] FIBERGLASS REBAR STRONGER, LIGHTER, RUSTPROOF.

MATEENBAR Fiberglass Rebar is a stronger, lighter weight, rustproof concrete reinforcement designed to meet the codes and standards you trust, help you increase on-site productivity, and deliver more durable structures.

Product Advantages Compared to Steel

 STRONGER
 2x stronger in tensile strength compared to the same size diameter

• 4x lighter compared to the same size diameter

More durable structures

ENHANCED PRO EXPERIENCE

- Heat-free handling
- Not electrically conductive
- Low-Thermal ConductivityNo thermal cycling impact

Code-Approved and Proven Performance

MATERIAL STANDARDS

• MATEENBAR complies with ASTM D7957, CSA S807 material standards, and EAD 260023-00-030 (Pending CE marking approval).

RESIDENTIAL CONCRETE

• MATEENBAR can be used in residential concrete, including footings and foundation walls as designed using ACI 332 and ACI 440 design methodology.

STRUCTURAL CONCRETE

• MATEENBAR can be used in structural concrete using design codes such as ACI 440.11-22, AASHTO FRP Design Specifications 2018, AFGC 2023 guidelines and the CNR-DT 203/2006.

MASONRY

• MATEENBAR can be used with TMS 402/602-22 Appendix D as reinforcing for masonry walls.

Intended Applications	RESIDENTIAL	CONCRETE REPAIR	COMMERCIAL/ INDUSTRIAL	TRANSPORTATION	MARINE	HIGH VOLTAGE & ELECTROMAGNETIC FIELDS
	 Driveways Sidewalks Pool Decks Basement Floors Basement Walls Footings Concrete Masonry ICF Construction 	•Balconies •Tunnel Linings •Replacement of Corroded Rebar	 Parking Slabs Warehouse Floors Agricultural Slabs Loading Docks Architectural and Structural Precast Truck Aprons Pour Back Slabs 	 Bridge Decks Traffic Barriers Civil Roadways Soft-Eye for Tunnels 	•Seawalls •Piles •Piers	• Light & Heavy Rail • MRI Rooms

•		REBAR WEIGHT/ CROS		SURED CHARACTER SS SHORT-TERM IONAL AREA STRENGTH (f		RM TENSILE	I TENSILE ULTIMATE TENSIL		ULTIMATE TENSILE STRAIN (_{e_{ft})}	MODULUS OF ELASTICITY (Ef)		FIBER MAS	
	mm	kg/m	mr	n²		ИРа	kN		%	GPa		%	
	6	0, 0757	3!	5	>	1100	>39						
	8	0, 096	44		>1100		>49						
	10	0, 165	76		>1000		>83						
	12	0, 225	104		>1000		>104			>50			
	16	0, 414	194		>1000		>206		>1, 5%			>80	
	19	0, 593	274		>850		>245						
	22	0, 776	362		>850		>313						
	25	1, 03	481		>850		>410						
	32	1, 603	3 758		>850		>663						
	FIBER MASS CONTENT*	MOISTURE ABSORPTION IN 24 H at 50°C		MOISTURE ABSORPTION TO SATURATION AT 50°C		MEAN GLAS TRANSITION TEMPERATU (DSC)*	N APPARENT		MEAN TRANSVERSE L SHEAR STRENGTH*		STR	* BOND STRENGTH	
	% %		<u> </u>			°C		MPa		MPa			
	≥80	≤0.2		<0,75		≥100	≥45		≥152			≥7,6	
	planning to c	construct			INVI CURINC								
Packaging	NOMINAL RE DIAMETER	EBAR LII	NEAR WEIG	GHT/ W	EIGHT PER METER BA	NUM	BER OF BARS F	PER \	VEIGHT OF A			R OF BARS	
Packaging	DIAMETER	EBAR LII	NEAR WEIG NGTH	GHT/ W	EIGHT PER METER BA	NUM	BER OF BARS F FER BUNDLE	PER \	NEIGHT OF A MASTER BUN	A IN	NUMBE	LL 40' INER	
ackaging	DIAMETER	EBAR LII	NEAR WEIG NGTH kg/m	GHT/ W	EIGHT PER METER BA	NUM	BER OF BARS F FER BUNDLE #	PER \	NEIGHT OF A MASTER BUN	A IN	NUMBE N A FU CONTA	LL 40' INER #	
ackaging	DIAMETER mm 6	EBAR LII	NEAR WEIG NGTH kg/m 0, 0757	GHT/ W	EIGHT PER METER BA kg 0,45	NUM	BER OF BARS F FER BUNDLE # 500	PER \	NEIGHT OF A MASTER BUN kg 227, 1	A IN	NUMBE N A FU CONTA	LL 40' INER # 55.000	
ackaging	DIAMETER 	EBAR LII	NEAR WEIG INGTH kg/m 0, 0757 0, 096	GHT/ W	EIGHT PER METER BA 0,45 0,58	NUM	BER OF BARS F FER BUNDLE # 500 500	PER \	NEIGHT OF A MASTER BUN kg 227, 1 288, 0	A IN	NUMBE N A FU CONTA	LL 40' INER # 55.000 	
ackaging	DIAMETER 	EBAR LII	NEAR WEIG INGTH 0, 0757 0, 096 0, 165	GHT/ W	EIGHT PER METER BA 0,45 0,58 0,99	NUM	BER OF BARS F FER BUNDLE # 500 500 500	PER \	NEIGHT OF A MASTER BUN 227, 1 288, 0 495, 0	A IN	NUMBE N A FU CONTA 5 4 2	LL 40' INER # 5.000 3.000 5.000	
ackaging	DIAMETER 	EBAR LII	NEAR WEIG INGTH 0,0757 0,096 0,165 0,225	GHT/ W	EIGHT PER METER BA 0,45 0,58 0,99 1,35	NUM	BER OF BARS F FER BUNDLE # 500 500 500 250	PER \	NEIGHT OF A MASTER BUN 227, 1 288, 0 495, 0 337, 5	A IN	NUMBE N A FU CONTA 5 4 2 2 1	LL 40' INER # 55.000 3.000 5.000 8.500	
ackaging	DIAMETER 	EBAR LII	NEAR WEIG INGTH 0,0757 0,096 0,165 0,225 0,414	GHT/ W	EIGHT PER METER BA 0,45 0,58 0,99 1,35 2,48	NUM	BER OF BARS F FER BUNDLE # 500 500 500	PER \	NEIGHT OF A MASTER BUN 227, 1 288, 0 495, 0 337, 5 496, 0	A IN	NUMBE N A FU CONTA 5 4 2 2 1 1	LL 40' INER # 55.000 3.000 55.000 8.500 0.000	
Packaging	DIAMETER 6 6 6 10 12 16 19	EBAR LII	NEAR WEIG NGTH 0,0757 0,096 0,165 0,225 0,414 0,593	GHT/ W	EIGHT PER METER BA 0,45 0,58 0,99 1,35 2,48 3,56	NUM	BER OF BARS F FER BUNDLE # 500 500 500 250 250 200 100	PER \	NEIGHT OF A MASTER BUN 227, 1 288, 0 495, 0 337, 5 496, 0 356, 0	A IN	NUMBE N A FU CONTA 5 4 2 2 1 1	LL 40' INER # 3.000 5.000 8.500 0.000 7.000	
Packaging	DIAMETER 6 6 10 12 16 19 22	EBAR LII	NEAR WEIG NGTH 0,0757 0,096 0,165 0,225 0,414 0,593 0,776	GHT/ W	EIGHT PER METER BA 0,45 0,58 0,99 1,35 2,48 3,56 4,66	NUM	BER OF BARS F FER BUNDLE # 500 500 250 250 200 100 100	PER \	NEIGHT OF A MASTER BUN 227, 1 288, 0 495, 0 337, 5 496, 0 356, 0 466, 0	A IN	NUMBE N A FU CONTA 5 4 2 2 1 1	LL 40' INER # 55.000 3.000 5.000 8.500 0.000 7.000 5.300	
Packaging	DIAMETER 	EBAR LII	NEAR WEIG NGTH 0, 0757 0, 096 0, 165 0, 225 0, 414 0, 593 0, 776 1, 03	GHT/ W	EIGHT PER METER BA 0,45 0,58 0,99 1,35 2,48 3,56 4,66 6,18	NUM	BER OF BARS F FER BUNDLE # 500 500 500 250 250 200 100 100 50	PER \	NEIGHT OF A MASTER BUN 2227, 1 288, 0 495, 0 337, 5 496, 0 356, 0 466, 0 309, 0	A IN	NUMBE N A FU CONTA 5 4 2 2 1 1 1	LL 40' INER # 55.000 3.000 5.000 8.500 0.000 7.000 5.300 4.000	
Packaging	DIAMETER 6 6 10 12 16 19 22	EBAR LII	NEAR WEIG NGTH 0,0757 0,096 0,165 0,225 0,414 0,593 0,776	GHT/ W	EIGHT PER METER BA 0,45 0,58 0,99 1,35 2,48 3,56 4,66	NUM	BER OF BARS F FER BUNDLE # 500 500 250 250 200 100 100	PER \	NEIGHT OF A MASTER BUN 227, 1 288, 0 495, 0 337, 5 496, 0 356, 0 466, 0	A IN	NUMBE N A FU CONTA 5 4 2 2 1 1 1	LL 40' INER # 55.000 3.000 5.000 8.500 0.000 7.000 5.300	
Packaging Labeling & Certificates	DIAMETER 	Ficates ar	kg/m 0,0757 0,096 0,165 0,225 0,414 0,593 0,776 1,03 1,603	SHT/ W 6-	EIGHT PER METER BA 0,45 0,58 0,99 1,35 2,48 3,56 4,66 6,18 9,62 supply bate	R NUME MAST	BER OF BARS F FER BUNDLE # 500 500 500 250 250 200 100 100 50	PER N	Keight OF A MASTER BUN 227, 1 288, 0 495, 0 337, 5 496, 0 356, 0 466, 0 309, 0 481, 0 e material. F	A IDLE I C	NUMBE N A FU CONTA 5 4 2 1 1 1 1 1 2 2 3 4 2 2 1 1 2 2 3 2 3 2 3 3 3 3 3 3 3 3 3 3	LL 40' INER # 55.000 3.000 5.000 8.500 0.000 7.000 5.300 4.000 2.550 certificate	
_abeling &	DIAMETER mm 6 8 10 12 16 19 22 25 32 Quality certi traceable by upon reques MATEENBAI of the surfac	EBAR LII LE	kg/m 0,0757 0,096 0,165 0,225 0,414 0,593 0,776 1,03 1,603 re issued for cs imprinte	SHT/ W 6-	EIGHT PER METER BA 0,45 0,58 0,99 1,35 2,48 3,56 4,66 6,18 9,62 supply bate rvals show	R NUME MAST	BER OF BARS F FER BUNDLE # 500 500 250 250 200 100 100 50 50 50 50	PER N	kg 227, 1 288, 0 495, 0 337, 5 496, 0 356, 0 466, 0 309, 0 481, 0 e material. F r, and produ ths. Discolo	Producti ction da	NUMBE N A FU CONTA 2 2 4 2 2 1 1 1 1 1 2 3 4 2 2 4 2 2 1 1 1 1 2 3 4 2 2 4 2 2 1 1 1 5 5 4 4 2 2 2 1 1 5 5 5 4 4 2 2 5 5 4 4 5 2 2 5 5 4 5 2 5 5 5 5	LL 40' INER # 55.000 3.000 55.000 8.500 0.000 7.000 5.300 4.000 2.550 certificate e available or chalkir	

This information and data contained herein is offered solely as a guide in the selection of product. We believe this information to be reliable but do not guarantee its applicability to the user's process or assume any responsibility or liability arising out of its use or performance. The user agrees to be responsible for thoroughly testing any application of the product to determine its suitability. Because of numerous factors affecting results, we make no warranty of any kind, express or implied, including those of merchantability and fitness for a particular purpose. Statements in this publication shall not be construed as representations or warranties or as inducements to infringe on any patent or violate any law, safety code, or insurance regulation. We reserve the right to modify this document without prior notice.